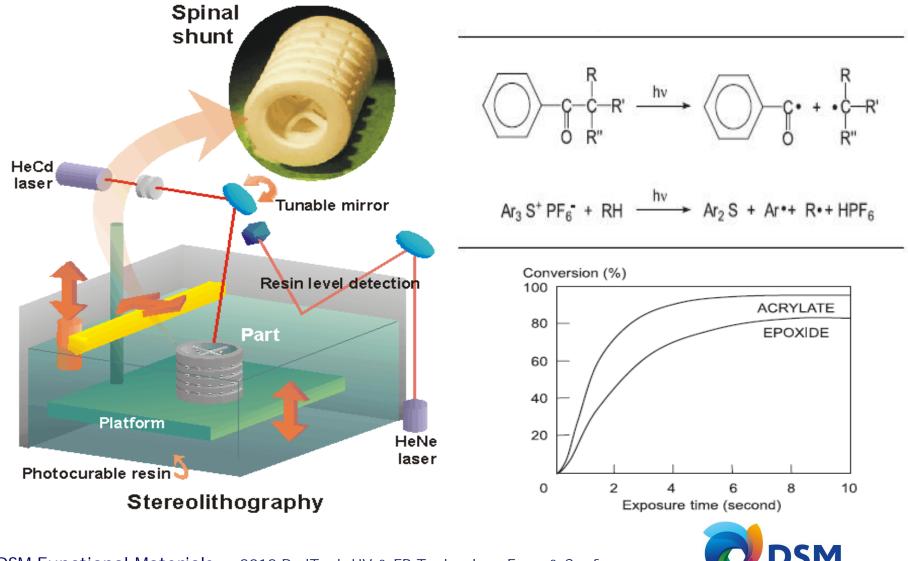


Development of Antimony Free Stereolithography Resin For Investment Casting

Kangtai Ren, John A. Lawton


DSM Functional Materials, Elgin, IL60120, USA

OUTLINE

- 1) Stereolithography fundamentals
- 2) Direct casting fundamental
- 3) Development of antimony free formulation
- 4) Application Sb free resin for investment casting

Stereolithography Fundamentals

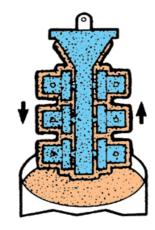

Photopolymerization for Stereolithography

Cationic photopolymerization

Radical Photopolymerization

Investment Casting Procedure

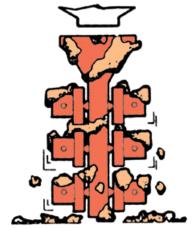
save time and cost


Finished Casting

Shakeout

Direct Casting by Stereolithography

Assemble SL parts



Coat ceramic slurry

Burnout SL parts

Pour metal into ceramic mould

Remove ceramic shell

DSM Functional Materials — 2012 RadTech UV & EB Technology Expo & Conference

Surface Defect of Casted Part

- 1) Ash residue:
- 2) Metal alloy degradation:

Ar3S⁺SbF6⁻ + O2
$$\xrightarrow{\Delta}$$
 Sb2O3 + Others
3 SbF6⁻ + 5 Al $\xrightarrow{\Delta}$ 3 Sb + 5 AlF3 + 3 F⁻

M. Ponikvar, *Talanta.* **2002**, *58*, 803

Commercially available Sb free photoinitiator

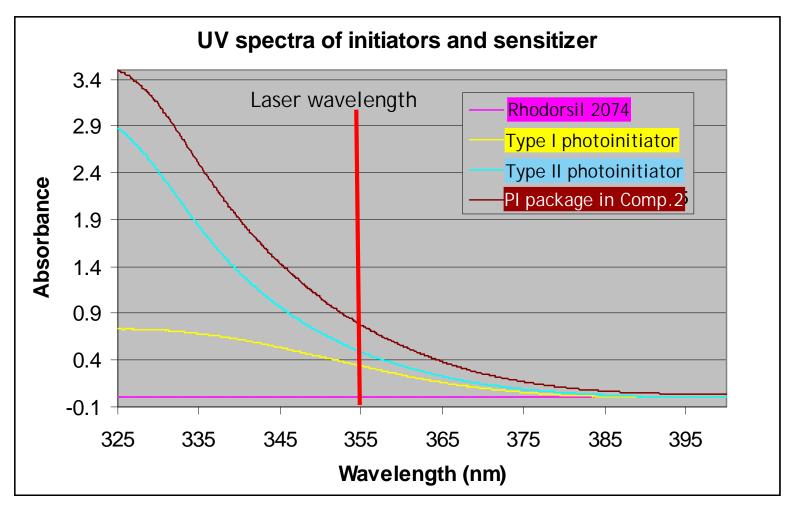
$$\bigcirc S^{+} - \bigcirc S^{-} - \bigcirc S$$

MtXn = SbF6
the common initiator in SL resins
MtXn = PF6
slower cure speed and
insufficient green strength

Irgacure 261

metal presence Yellow color Long wavelength abs. Insufficient green strength

Irgacure 250


Slow curing Short wavelength abs. Insufficient green strength

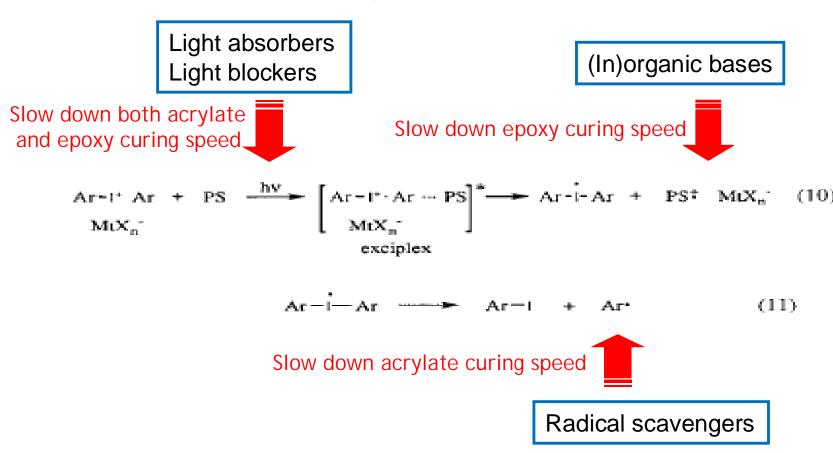
Rhodorsil 2074

Fast curing
Short wavelength abs.
Excellent green strength

Photoinitiator Package

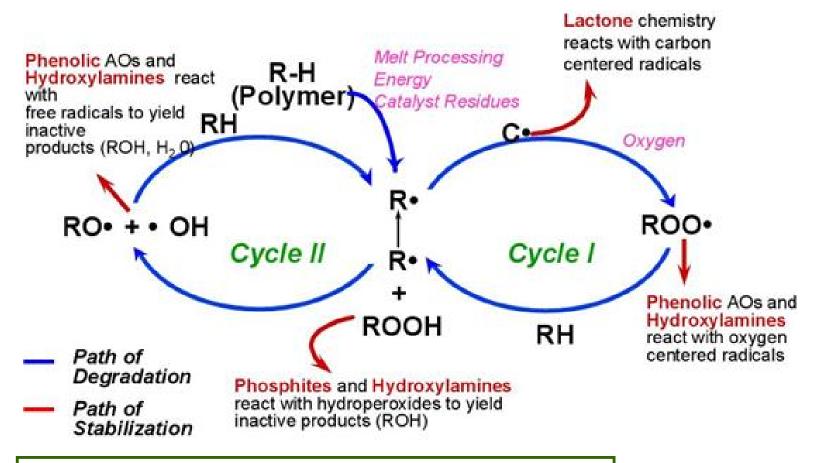
Run-away Reaction

Sunlight Cure- Petri-dish top, Bottle Side View


Run-away reaction

Resin became brown, black or even smoking under actinic radiation due to exothermal

$$(C_6H_5)_3S^+AsF_6^ (E^{red}_{1/2} = -1.2 \text{ eV vs. SCE})$$
 $(C_6H_5)_2I^+AsF_6^ (E^{red}_{1/2} = -0.2 \text{ eV vs. SCE})$


Technical approaches to stabilization of antimony free resins

- J. V. Crivello, J. Polym. Sci. A: Polym. Chem. 1999, 37, 4241
- S.R. Kerr, U.S. Patent 5,973,020, Oct 26, 1999

Antioxidant as radical scavenger

Thermal degradation controlled by AOs and HALS HALS could inhibit epoxy curing

Exposure stability test on base compositions w/o antioxidant1

Base Composition	Comp. 1	Ex. 01	Comp.2	Ex. 02			
Epoxide A	88.9	88.9					
Mixture of Epoxides			86.74	86.74			
Epoxide B	10	10					
Rhodorsil 2074	0.9	0.9	1	1			
Acrylate			6	6			
Type II photoinitiator	0.2	0.2	0.16	0.16			
Type I photoinitiator			5	5			
Additives			1.007	1.007			
Antioxidant 1		0.1		0.1			
Exposure stability							
(20g sample in petri-dish for PCA)							
Browning Time	2.6	4.7	<10	>10			
(mins exposure)							

Comparative example 2 and their mixture with different concentration of antioxidants

Base Composition	Ex. 03	Ex.04	Ex.05	Ex. 06
Antioxidant 1			0.05	0.075
Antioxidant 2	0.1	0.05	0.05	
Green strength (cured strips)	Poor	Better	Better	Better
E10 (mJ/cm2)		27.3	27.23	45.49
Dp (mm)		0.30	0.29	0.26
Exposure stability (20g sample in petri-dish for PCA)	Pass	Pass	Pass	Pass
Exposure stability (15 g sample in petri-dish for PCA)	Pass	Pass	Fail	Pass

DSM Somos® antimony free SL resin

QuickCast™ pattern built from PhrotoCast™19120

DSM Somos® 19120 reduced the residual ash to be less than 0.01%, versus 0.3% for DSM Somos® 11120

HEALTH · NUTRITION · MATERIALS

Summary

Antimony Free Stereolithography Resin:

- 1. PI Package: Iodonium borate/type I&II photoinitiator/Antioxidant
- 2. Run-away reaction was controlled
- 3. Minimum ash content
- 4. Better surface quality for casting parts
- 5. More environmentally friendly SL resin (medical modeling)